Positive energy condition for LRS Bianchi type-II spacetimes via Noether symmetries
1 Department of Basic Sciences, College of Electrical and Mechanical Engineering, National University of Science and Technology , H-12 campus, Islamabad 44000, Pakistan
2 Department of Humanities and Sciences, School of Electrical Engineering and Computer Science, National University of Science and Technology , H-12 campus, Islamabad 44000, Pakistan
Abstract
In this paper, we investigate the locally rotationally symmetric Bianchi type-II spacetimes by employing the Noether and Lie symmetry approaches. Different choices of the scale factors are considered, and the corresponding symmetry algebras together with their first integrals are explicitly constructed. It is shown that the general case admits a three-dimensional Noether algebra, which extends to higher dimensions for particular functional forms of the scale factors, while the Lie symmetry algebra ranges from six to eight dimensions. The conserved quantities obtained through Noether symmetries provide important tools to simplify the dynamics of the system. In addition, the curvature characteristics are studied through the Ricci scalar and Einstein tensor, where the analysis of the \(\mathcal{G}_{00}\) component of the Einstein tensor confirms the positivity of the energy density. This establishes that the obtained cosmological models are physically realistic.
References
[1] Einstein, A., Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 844 (1915)
[2] Einstein, A., Ann. Phys. 354, 769 (1916)
[3] Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C. and Herlt, E., *Exact Solutions of Einstein’s Field Equations*, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, 2003)
[4] Lie, S. and Engel, F., *Theorie der Transformationsgruppen*, Vol. I–III (B.G. Teubner, Leipzig, 1888–1893)
[5] Ibragimov, N. H., *Transformation Groups Applied to Mathematical Physics*, Mathematics and its Applications, Vol. 3 (Springer, Dordrecht, 1985)
[6] Olver, P. J., *Applications of Lie Groups to Differential Equations*, 2nd ed., Graduate Texts in Mathematics, Vol. 107 (Springer, New York, 1993)
[7] Stephani, H., *Differential Equations: Their Solution Using Symmetries* (Cambridge Univ. Press, Cambridge, 1990)
[8] Bluman, G. W. and Kumei, S., *Symmetries and Differential Equations*, Applied Mathematical Sciences, Vol. 81 (Springer, New York, 1989)
[9] Capozziello, S., Marmo, G., Rubano, C. and Scudellaro, P., Int. J. Mod. Phys. D 6, 491 (1997)
[10] Tsamparlis, M. and Paliathanasis, A., J. Phys. A: Math. Theor. 44, 175202 (2011)
[11] Cotsakis, S., Leach, P. G. L. and Pantazi, H., Grav. Cosmol. 4, 314 (1998), arXiv:gr-qc/0011017 [gr-qc]
[12] Corichi, A. and Montoya, E., Phys. Rev. D 85, 104052 (2012)
[13] Paliathanasis, A., Symmetry 15, 306 (2023)
[14] Sharif, M. and Nawazish, I., Ann. Phys. 389, 283 (2018)
[15] Sharif, M. and Shafique, I., Phys. Rev. D 90, 084033 (2014)
[16] Shamir, M. F. and Ahmad, M., Mod. Phys. Lett. A 32, 1750086 (2017)
[17] Sharif, M. and Gul, M. Z., Chin. J. Phys. 80, 1309 (2022)
[18] Qadir, A. and Camci, U., Symmetry 14, 476 (2022)
[19] Ali, S. and Hussain, I., Eur. Phys. J. C 76, 63 (2016)
[20] Hussain, T. and Akhtar, S. S., Eur. Phys. J. C 78, 677 (2018)
[21] Amirhashchi, H., Phys. Lett. B 697, 429 (2011)
[22] Giani, L., Bianchi Type II Cosmology in Hořava–Lifshitz Gravity, Ph.D. Thesis, University of Bologna (2014)
[23] Pradhan, A., Ram, P. and Singh, R., Astrophys Space Sci. 331, 275 (2011)
[24] Pradhan, A., Amirhashchi, H. and Jaiswal, R., Astrophys Space Sci. 334, 249 (2011)
[25] Tiwari, R. K., Tiwari, D. and Shukla, P., Chin. Phys. Lett. 29, 010403 (2012)
[26] Tarayrah, M. R., Azad, H., Bokhari, A. H. and Zaman, F. D., arXiv preprint arXiv:1502.02138 (2015)
[27] Noether, E., Transport Theory and Statistical Physics 1, 186 (1971)
Cite this article
Waheed, M. H. and Hussain, I., Positive energy condition for LRS Bianchi type-II spacetimes via Noether symmetries, Turanian J. Vol. 1, No. 3 (010304), 2025.