bg_image

Thermal Radiation from Thin Accretion Disks in a Deformed Kerr Spacetime

1 Institute for Advanced Studies, New Uzbekistan University , Movarounnahr str. 1, Tashkent 100007, Uzbekistan

2 Ulugh Beg Astronomical Institute of the Uzbekistan Academy of Sciences , Astronomy St. 33, Tashkent 100052, Uzbekistan

Download PDF Published: 7 October 2025

Abstract

We study the thermal radiation from geometrically thin, optically thick accretion disks in the framework of the $\delta$-Kerr spacetime, which parametrizes deviations from the Kerr geometry through a deformation parameter $\delta$. Focusing on equatorial circular orbits, we compute the specific energy, angular momentum, and innermost stable circular orbit (ISCO) as functions of the black hole spin and deformation parameter. These quantities are used within the Novikov–Thorne formalism to determine the disk radiative flux and effective temperature profile.

Relativistic ray tracing is employed to construct observed temperature maps and thermal spectra, taking into account gravitational redshift, Doppler boosting, light bending, and a fixed color correction factor. We analyze the dependence of the ISCO radius, radial temperature profiles, observed temperature distributions, and thermal spectra on the deformation parameter, black hole spin, and observer inclination.

We find that deviations from the Kerr geometry modify the ISCO location and the inner disk temperature, with the strongest effects occurring in the innermost disk regions. While these modifications are clearly visible in the temperature maps, their impact on the integrated thermal spectra is modest for the parameter range considered. In particular, the thermal spectra corresponding to different values of the deformation parameter are nearly indistinguishable over most of the energy range, with only subtle differences appearing near the spectral peak and high-energy tail. By contrast, variations in the black hole spin and inclination produce significantly stronger spectral changes.

Our results indicate that, within the thin-disk continuum framework, thermal emission alone provides limited sensitivity to small deviations from the Kerr geometry, due to degeneracies between the deformation parameter, spin, inclination, and radiative efficiency. Combining thermal spectra with complementary observables, such as X-ray reflection features, polarization, or timing information, may offer a more promising avenue for testing deviations from the Kerr spacetime.

References

[1] Akiyama, K. et al. (Event Horizon Telescope Collaboration), Astrophys. J. Lett. 875, L1 (2019)

[2] Akiyama, K. et al. (Event Horizon Telescope Collaboration), Astrophys. J. Lett. 930, L12 (2022)

[3] Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 131103 (2016)

[4] Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 141101 (2017)

[5] Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017)

[6] Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. 848, L13 (2017)

[7] Psaltis, D., Gen. Relativ. Gravit. 51, 137 (2019)

[8] Gralla, S. E., Phys. Rev. D 103, 024023 (2021)

[9] Glampedakis, K. and Pappas, G., Phys. Rev. D 104, L081503 (2021)

[10] Cárdenas-Avendaño, A., Jiang, J. and Bambi, C., Phys. Lett. B 760, 254 (2016)

[11] Bambi, C., Rev. Mod. Phys. 89, 025001 (2017)

[12] Bambi, C., Freese, K., Vagnozzi, S. and Visinelli, L., Phys. Rev. D 100, 044057 (2019)

[13] Carballo-Rubio, R., Di Filippo, F., Liberati, S. and Visser, M., Phys. Rev. D 98, 124009 (2018)

[14] Abdikamalov, A. B., Abdujabbarov, A. A., Ayzenberg, D., Malafarina, D., Bambi, C. and Ahmedov, B., Phys. Rev. D 100, 024014 (2019)

[15] Bambi, C., Cárdenas-Avendaño, A., Dauser, T., García, J. A. and Nampalliwar, S., Astrophys. J. 842, 76 (2017)

[16] Berti, E., Barausse, E., Cardoso, V., Gualtieri, L., Pani, P., Sperhake, U., Stein, L. C., Wex, N., Yagi, K., Baker, T. and et al., Classical Quantum Gravity 32, 243001 (2015)

[17] Cardoso, V. and Gualtieri, L., Classical Quantum Gravity 33, 174001 (2016)

[18] Cardoso, V. and Pani, P., Nat. Astron. 1, 586 (2017)

[19] Krawczynski, H., Astrophys. J. 754, 133 (2012)

[20] Krawczynski, H., Gen. Relativ. Gravit. 50, 100 (2018)

[21] Yagi, K. and Stein, L. C., Class. Quantum Grav. 33, 054001 (2016)

[22] Yunes, N. and Siemens, X., Living Rev. Relativ. 16, 9 (2013)

[23] Tripathi, A., Nampalliwar, S., Abdikamalov, A. B., Ayzenberg, D., Bambi, C., Dauser, T., García, J. A. and Marinucci, A., Astrophys. J. 875, 56 (2019)

[24] Ghasemi-Nodehi, M., Azreg-Aïnou, M., Jusufi, K., and Jamil, M., Phys. Rev. D 102, 104032 (2020)

[25] Jusufi, K., Azreg-Aïnou, M., Jamil, M., Wei, S.-W., Wu, Q., and Wang, A., Phys. Rev. D 103, 024013 (2021)

[26] Liu, C., Zhu, T., Wu, Q., Jusufi, K., Jamil, M., Azreg-Aïnou, M., and Wang, A., Phys. Rev. D 101, 084001 (2020)

[27] Jusufi, K., Jamil, M., Chakrabarty, H., Wu, Q., Bambi, C., and Wang, A., Phys. Rev. D 101, 044035 (2020)

[28] Afrin, M., Kumar, R., and Ghosh, S. G., Mon. Not. R. Astron. Soc. 504, 5927 (2021)

[29] Vincent, F. H., Meliani, Z., Grandclément, P., Gourgoulhon, E. and Straub, O., Classical Quantum Gravity 33, 105015 (2016)

[30] Olivares, H., Younsi, Z., Fromm, C. M., De Laurentis, M., Porth, O., Mizuno, Y., Falcke, H., Kramer, M. and Rezzolla, L., Mon. Not. R. Astron. Soc. 497, 521 (2020)

[31] Cunha, P. V. P., Grover, J., Herdeiro, C., Radu, E., Rúnarsson, H. and Wittig, A., Phys. Rev. D 94, 104023 (2016)

[32] Dey, D., Shaikh, R. and Joshi, P. S., Phys. Rev. D 102, 044042 (2020)

[33] Dey, D., Joshi, P. S. and Shaikh, R., Phys. Rev. D 103, 024015 (2021)

[34] Herdeiro, C. A. R. and Radu, E. Int. J. Mod. Phys. D 24, 1542014 (2015)

[35] Volkov, M. S., Class. Quantum Grav. 30, 184009 (2013)

[36] Benkel, R., Sotiriou, T. P. and Witek, H., Class. Quantum Grav. 34, 064001 (2017)

[37] Kleihaus, B., Kunz, J., and Navarro-Lérida, F., Class. Quantum Grav. 33, 234002 (2016)

[38] Kurmanov, E., Boshkayev, K., Giambò, R., Konysbayev, T., Luongo, O., Malafarina, D., and Quevedo, H., Astrophys. J. 925, 210 (2022)

[39] Boshkayev, K., Konysbayev, T., Kurmanov, E., Luongo, O., Malafarina, D., Mutalipova, K., and Zhumakhanova, G., Mon. Not. R. Astron. Soc. 508, 1543 (2021)

[40] Boshkayev, K., Idrissov, A., Luongo, O., and Malafarina, D., Mon. Not. R. Astron. Soc. 496, 1115 (2020)

[41] Quevedo, H., and Mashhoon, B., Phys. Rev. D 43, 3902 (1991)

[42] Allahyari, A., Firouzjahi, H., and Mashhoon, B., Class. Quantum Grav. 37, 055006 (2020)

[43] Das, A., J. Math. Phys. 12, 1136 (1971)

[44] Zipoy, D. M., J. Math. Phys. 7, 1137 (1966)

[45] Voorhees, B. H., Phys. Rev. D 2, 2119 (1970)

[46] Hoenselaers, C., in Solutions of Einstein’s Equations: Techniques and Results, edited by C. Hoenselaers and W. Dietz (Springer, Berlin, Heidelberg, 1984), pp. 68–84

[47] Papadopoulos, D., Stewart, B., and Witten, L., Phys. Rev. D 24, 320 (1981)

[48] Herrera, L., Paiva, F. M., and Santos, N. O., Int. J. Mod. Phys. D 9, 649 (2000)

[49] Herrera, L., Int. J. Mod. Phys. D 17, 557 (2008)

[50] Chowdhury, A. N., Patil, M., Malafarina, D., and Joshi, P. S., Phys. Rev. D 85, 104031 (2012)

[51] Boshkayev, K., Gasperín, E., Gutiérrez-Piñeres, A. C., Quevedo, H., and Toktarbay, S., Phys. Rev. D 93, 024024 (2016)

[52] Benavides-Gallego, C. A., Abdujabbarov, A., Malafarina, D., Ahmedov, B., and Bambi, C., Phys. Rev. D 99, 044012 (2019)

[53] Toshmatov, B., Malafarina, D., and Dadhich, N., Phys. Rev. D 100, 044001 (2019)

[54] Toshmatov, B., and Malafarina, D., Phys. Rev. D 100, 104052 (2019)

[55] Toktarbay, S., and Quevedo, H., Gravit. Cosmol. 20, 252 (2014)

[56] Frutos-Alfaro, F., and Soffel, M., R. Soc. Open Sci. 5, 180640 (2018)

Cite this article

Mirzaev, T., Thermal Radiation from Thin Accretion Disks in a Deformed Kerr Spacetime, Turanian J. Vol. 1, No. 4 (010401), 2025

Turanian Journal Logo