Probing quantum corrections via electromagnetic frequency shifts around black holes
1 Institute of Fundamental and Applied Research, National Research University TIIAME , Kori Niyoziy 39, Tashkent 100000, Uzbekistan
2 Institute for Advanced Studies, New Uzbekistan University , Movarounnahr str. 1, Tashkent 100007, Uzbekistan
3 School of Physics, Harbin Institute of Technology , Harbin 150001, People’s Republic of China
4 Tashkent State Technical University , Tashkent 100095, Uzbekistan
5 Institute of Theoretical Physics, National University of Uzbekistan , Tashkent 100174, Uzbekistan
Abstract
In this work, we study the frequency shift of electromagnetic radiation around a quantum-corrected black hole by analyzing photon dynamics in a modified Schwarzschild metric with quantum correction parameter \(\zeta\). Particular emphasis is placed on the gravitational redshift, examining how it is influenced by the quantum correction. Additionally, we investigate the effects of \(\zeta\) on the horizon structure and curvature characteristics in this framework.
References
[1] Penrose, R., Phys. Rev. Lett. 14, 57 (1965)
[2] Hawking, S., Proc. R. Soc. Lond. A 300, 187 (1967)
[3] Hawking, S. W. and Penrose, R., Proc. R. Soc. Lond. A 314, 529 (1970)
[4] Iorio, L., Universe 1, 38 (2015)
[5] Debono, I. and Smoot, G. F., Universe 2, 23 (2016)
[6] Vishwakarma, R. G., Universe 2, 1 (2016)
[7] Beltrán Jiménez, J., Heisenberg, L. and Koivisto, T. S., Universe 5, 173 (2019)
[8] Dymnikova, I., Gen. Relativ. Gravit. 24, 235 (1992)
[9] Hayward, S. A., Phys. Rev. Lett. 96, 031103 (2006)
[10] Narzilloev, B., Abdujabbarov, A., Bambi, C. and Ahmedov, B., Phys. Rev. D 99, 104009 (2019)
[11] Battista, E. and Esposito, G., Eur. Phys. J. C 82, 1088 (2022)
[12] Steinbauer, R., Jahresber. Dtsch. Math. Ver. 125, 73 (2023)
[13] Beem, J. K., Ehrlich, P. E. and Easley, K. L., *Global Lorentzian Geometry*, 2nd ed. (Marcel Dekker, New York, 1996)
[14] Hawking, S. W. and Ellis, G. F. R., *The Large Scale Structure of Space-Time* (Cambridge Univ. Press, Cambridge, 1973)
[15] Poisson, E. and Israel, W., Phys. Rev. D 41, 1796 (1990)
[16] Bardeen, J. M., in *Proceedings of International Conference GR5* (Tbilisi, USSR, 1968)
[17] Frolov, V. P., Phys. Rev. D 94, 104056 (2016)
[18] Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C. and Visser, M., J. High Energy Phys. 2018, 23 (2018)
[19] Torres, R., in *Regular Black Holes: Towards a New Paradigm of Gravitational Collapse*, edited by Bambi, C. (Springer Nature Singapore, Singapore, 2023), pp. 421–446
[20] Spallucci, E. and Smailagic, A., Int. J. Mod. Phys. D 26, 1730013 (2017)
[21] Lan, C., Yang, H., Guo, Y. and Miao, Y.-G., Int. J. Theor. Phys. 62, 202 (2023)
[22] Kumar, R., Ghosh, S. G. and Wang, A., Phys. Rev. D 100, 124024 (2019)
[23] Tanaka, Y. et al., Nature 375, 659 (1995)
[24] Narzilloev, B., Rayimbaev, J., Abdujabbarov, A. and Bambi, C., Eur. Phys. J. C 80, 1074 (2020)
[25] Narzilloev, B. and Ahmedov, B., Int. J. Mod. Phys. A 38, 2350026 (2023)
[26] Herrera-Aguilar, A. and Nucamendi, U., Phys. Rev. D 92, 045024 (2015)
[27] Saidov, B., Narzilloev, B., Abdujabbarov, A., Khudoyberdieva, M. and Ahmedov, B., Universe 10, 454 (2024)
Cite this article
Saidov, B., Narzilloev, B., Abdujabbarov, A. and Ahmedov, B., Probing quantum corrections via electromagnetic frequency shifts around black holes, Turanian J. Vol. 1, No. 1 (010106), 2025.